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The Pearson random walk with unequal step sizes 
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Abstract. There have been many analyses of Pearson random walks with equal step sizes. 
Several applications suggest the importance of these walks with unequal step sizes. 
Numerical comparisons are made of approximations obtained using the central limit 
theorem and the steepest descents method. These suggest that the latter generally, but 
not always, leads to more accurate results. We also derive an approximation that is 
extremely accurate at near-maximal extensions. 

1. Introduction 

The three-dimensional generalisation of the Pearson (1905) random walk has played 
a significant role in the analysis of polymer chain configurations (Volkenstein 1966, 
Flory 1968, Burchard and Kajiwara 1970, Yamakawa 1971). Its properties have been 
studied by many investigators (Lord Rayleigh 1919, Treloar 1946, Daniels 1952, 
Johnson 1966, Jernigan and Flory 1969, DvofAk 1972a,b, Barakat 1973). In 
contrast, there has been much less effort devoted to the two-dimensional random 
walk, although a formal solution for the probability distribution of the end-to-end 
distance was quickly furnished after Pearson's original inquiry (Kluyver 1906, Watson 
1942). The two-dimensional Pearson walk has been used as a model for the locomotion 
of micro-organisms on surfaces and has application in crystallography (Srinivisan and 
Parthasarathy 1976). Our interest in this subject was stimulated by a recent query 
by Wilson (1980) relating to the distribution of the projection of a two-dimensional 
random walk on an arbitrary axis, in the limit in which the projection is approximately 
as long as the maximum extension. This problem arises in the context of crystallo- 
graphy, where the step sizes are generally unequal and are not randomly distributed. 

The problem of approximating the probability density of a projection on an 
arbitrary axis appears in polymer physics, where Kuhn and Grun (1942) were the first 
to discuss the limit in which the projection is of the same order of magnitude as the 
maximal length. They used a heuristic method to find an approximate solution, later 
corrected by Jernigan and Flory (1969). Subsequently, Dvofiik (1972a, b), 
Yamakawa (1971) and Daniels (1972) used the method of steepest descents to calculate 
the approximate densities. All of these analyses are valid when bond (or step) lengths 
are equal. There appears to be no comparable treatment available when step sizes 
differ, although similar problems arise in sound scattering in the ocean (Dyer 1970). 
In this paper we will do two things. The first is to compare the approximations 
produced by the central limit theorem and the steepest descents method (Daniels 
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1954) with accurate numerical solutions for the relevant probability densities. The 
second is to give a method for systematically approximating the probability density 
of the projection when it is close to the maximum extension. 

2. Approximate solutions 

I t  is well known that the central limit theorem leads to a Gaussian distribution for 
the sum of n random variables, when n is large and when the average step sizes are 
bounded. The Gaussian approximation is generally a good one when the end-to-end 
distance is O(nl/*) for large n. Furthermore, the error made by using the Gaussian 
approximation is O(n-'/ ').  It is less well known that Daniels (1954) has shown that 
the approximation obtained by using the method of steepest descents to evaluate the 
relevant integrals is valid to O(n-'). It also appears to be true from examples that 
we have studied that, when step sizes are uniformly bounded, the steepest descents 
approximation is valid over the entire range in the variable x, whereas the Gaussian 
approximation can lead to serious errors at the edges of the range, i.e. when the 
end-to-end distance is approximately equal to the maximum possible extension. Domb 
and Offenbacher (1978) have applied the steepest descents method to a variety of 
simple random walk problems in which some of these points are illustrated numerically. 

As we have mentioned, Kuhn and Grun (1942) used a heuristic method to find 
an approximation valid when the random walk is near full extension. In our formula- 
tion we will start by writing an exact expression for the probability density in terms 
of characteristic functions. In the appendix the equivalence of these two methods will 
be demonstrated. Let the random walk consist of steps of lengths L1, L2 , .  . . , L,. 
The projection of a single step on an arbitrary axis is L cos 8, where 8 is uniformly 
distributed in (0,2ir) .  The characteristic function for a single projection is 

(exp(iwL cos e)) = 1 J exp(iwL cos 8 )  de = J ~ ( ~ L )  
2lr --'iT 

so that the probability density for the sum of n projections can be expressed as 
1 ,-OD 

p(x)  = J exp(-iwx) JO(wLj) dw 
2ir -m j = l  

1 im = - exp(-vx) fi lo(vLj) dv 
2iri -im ; = l  

where the second integral is obtained from the first by the change of variables w = -iv. 
When n is large, and the step sizes are uniformly bounded, i.e. there is an L such 
that max L; < L,  the method of steepest descents can be used to furnish an approxima- 

tion to p ( x )  (Daniels 1954). Let 
i 

j = l  

then the (unique) real root of the equation 

(3)  
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is required for the approximation. This condition replaces the Langevin function that 
appears in the solution to the three-dimensional problem (Dvoiak 1972a, b, 
Yamakawa 1971, Daniels 1972). In terms of 17, the steepest descents approximation 
can be written as 

where $(x) is the function 

In all of our numerical calculations we have followed Daniels' (1954) suggestion and 
used the normalised form 

LT -1 

P(x)-Pso(x)(/  -LT PSD(U) du) . (7) 

The solution to equation (4) can be expanded in a power series in x when x/LT 
is small. The first two terms of this series are 

2x +" Z,L4x3 
8%- 2 4 +  . . . .  

ZjLf (EjLj)  

When the lowest-order term is substituted into equation ( 5 )  and the Bessel function 
is replaced by its lowest-order approximation, the Gaussian or central limit approxima- 
tion results. One would not expect the Gaussian approximation to be satisfactory at 
projections approaching maximum extension, whereas the steepest descents approxi- 
mation does have the property of being exactly equal to zero when x > LT. It is 
possible to derive an expansion for p(x)  valid near maximum extension, i.e. when x 
is close to LT. For this analysis set x = L T - ~  and let the density function of t be 
denoted by g ( t ) .  Equation (2) allows us to express g ( t )  as 

where 2 - l  denotes the inverse Laplace transform. We are interested in the behaviour 
of g ( t )  for small t. By a Tauberian theorem for Laplace transforms (Doetsch 1943) 
we can infer an expansion for g ( t )  from the large Iul behaviour of the transform. For 
this purpose we make use of the asymptotic expansion 

to find for g ( t )  the expansion 
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In practice, the coefficients of this series can be generated very quickly by recursion. 
If we return to equation (10) and write 

1 9 1  
j = i  ~ u L ,  128(vLj) v --tf-- 

then the a satisfy 

a?+') =a:"' + l/8L,+1 

and so on. These were used in calculations made to compare exact and approximate 
results. 

3. Numerical comparisons 

Greenwood and Durand (1955) compared two-dimensional results obtained by 
numerical integration for the equal-step case against approximations based on an 
expansion in terms of Hermite functions. Daniels (1972) compared the steepest 
descents and Gaussian approximations and exact expressions for the three-dimensional 
random walk with equal bond lengths, and Lyon (1970) has compared the two 
approximations in the two-dimensional case, without calculating an exact result to 
provide a standard for the comparison. We have made a three-way comparison for 
three five-step random walks. The step lengths in the three cases are (i) (1, 1, 1, 1, l ) ,  
(ii) (1, 1, 1, 1 , s )  and (iii) (1 ,2 ,3 ,4 ,5) .  The accurate probability densities are most 
readily found by using a formula first derived by Barakat (1973) and used by Barakat 
and Cole (1979). The probability density can be expressed as the Fourier series 

where the coefficients C(nm/LT) are just 

In figure 1 we show graphs of p(x)  for the three cases enumerated above. The 
symmetry of p(x)  is obvious so that only values for x > O  are plotted. Notice that in 
case (ii) the resulting p ( x )  is bimodal. This result is not surprising as can be seen by 
considering the case n = 1 where one easily shows that 

(16) 
2 -1 p ( x ) = [ d L 2 - x  )I - L S x S L  

which has a singularity at the maximum extension. Since case (ii) has a single step of 
length 5 that dominates the remaining steps the resulting probability density should 
resemble that for the case of a single step. 

In figure 2 we show curves of the relative error, calculated as 
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Figure 1. p ( x )  for x > O  ( p ( - x )  = p ( x ) )  for a five-step walk: (a) all step lengths equal to 
1, (6) step lengths (1, 1, 1, 1, 5 ) ,  ( c )  step lengths (1, 2,  3 ,4 ,  5 ) .  
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Figure 2. (a) Curves of the relative error for two approximations (SD, steepest descents; 
G, Gaussian) to the exact p ( x )  for the case of an equal-length five-step walk. Notice that 
the relative error for the SD approximation remains bounded over the entire interval in 
x while the Gaussian approximation is badly in error in the maximal extension region. 
(6) Curves of the relative error for the bimodal density shown in figure l (6) .  In this case 
the SD approximation is poor near the origin, but is seen to be an improvement over the 
Gaussian approximation at moderate and large projections. (c) Curves of the relative 
error for the five-step walks with step lengths (1, 2, 3,4,  5 ) .  The SD approximation is seen 
to be useful over the entire range of x .  

for the three cases. In each case the Gaussian approximation leads to large relative 
errors at the maximum extension while the steepest descents approximation appears 
to yield useful results over the entire interval, with the exception in one case of a 
region near x = 0. Examination of a much larger set of data shows this to be true 
quite generally. The endpoint approximation derived in equation (1 1) yields extremely 
accurate representations of p ( x )  in the neighbourhood of the maximum extension. 
For example, with six terms of the series in equation (11) for the case (1, 1, 1, 1 , s )  
at x = 7 one finds a relative error of 1 X lo-* using the endpoint approximation 
compared with a relative error equal to 4 X obtained with the steepest descents 
approximation. Further, the relative error using the endpoint approximation rapidly 
goes to zero as x approaches 9, the maximum extension, while it approaches a nearly 
constant value of 8.5 X lo-* at the endpoint in the steepest descents case. Similar 
results are obtained for other combinations of lengths. 

One can develop a theory along parallel lines for three-dimensional freely jointed 
chains. However, there do not appear to be any significant problems relating to 
random walks with differing step sizes. It is also possible to develop an endpoint 
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approximation for the original Kuhn-Grun problem parallel to that derived in two 
dimensions. However, the Laplace transform procedure leads rather trivially to 
Treloar's (1946) exact solution and is therefore uninteresting. 

Appendix. Equivalence of the Kuhn-Griin approximation and the characteristic 
function method 

In this appendix we will deal only with the case where all step lengths are equal since 
this corresponds to the problem dealt with by Kuhn and Grun (1942). The Kuhn-Grun 
calculation starts by dividing the angular interval (-T,  7 r )  into sub-intervals: 

- T = e o < e 1 < e 2 <  I . I  <em=v (AI )  

and hej = ej - 8j-1 so that 
m 

1 he, = 27r, 
j = l  

Assume now that the he are sufficiently small so that the projection of a single step 
can be adequately represented by x = L cos 6, where fIj C 6, < f3j+l. Since, by assump- 
tion, the angle of any step with respect to an arbitrary line is uniformly distributed 
in ( -7r ,  T ) ,  it follows that the probability that its angle falls in (@j-l, e j )  is Aej/27r. 
Supposing that the random walk has n steps, the joint probability that there are nj  
angles in the interval (Oi-l, ej ) ,  j = 1, 2, . . . , m, is 

Hence the probability that the projection of the random walk is exactly equal to x is 
given by 

where the sum is over all II subject to the constraints 

f n j = n  f n j L  cos 6, = x .  
j = l  j = l  

( - 4 5 )  

At this point Kuhn and Grun (1942) approximate p ( x )  by replacing the sum in equation 
(A4) by its largest term, and then maximise the result subject to the constraints of 
equations (A5). An alternative method that is less crude is to deal with the exact 
expression for p ( x )  given in equation (A4) and include the second constraints of 
equation (A5) by means of a delta function, i.e., 

exp( - iwx) c q ( n )  exp iw n j L  cos ej dw -1 1 "  
( j  

=- J 
27r -m {n) 

) n  dw exp(-iwx)( - exp(iwl cos e,) 1 "  Aej 
27r -m i 27r 

= - 
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where we have used an integral representation for the delta function. In the limit 
m + CO, hej + 0, it follows that 6. + 0, and 

1 
- exp(iwl cos gj)hOj + -!- I exp(iwl cos e)  dO 
2 7  j 2ir --TT 

= Jo(wL)  (A71 

which is just the characteristic function for a single projection so that equation (2) 
gives the exact expression for p ( x )  in terms of characteristic functions. 
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